40Questions Show answers. Question 1. SURVEY. 5 seconds. Q. susunan bilangan yang disusun ke dalam baris dan kolom disebut answer choices. persegi. matriks.
Diketahuimatriks. 1 0. A 2 1 3 4. det A t B . Jika B = A-1 dan At merupakan transpos dari A. 2 Tentukan nilai x det 2 A det 5B. Dokumen Serupa dengan Determinan Matriks. Karusel Sebelumnya Karusel Berikutnya. Ukuran Pemusatan Data aplikasi. Diunggah oleh. Kemal Gokil. Sistem Imunitas to Kmb 3.
thefinal cut lyrics; tough headwear running beanie uk; chalk and talk hitman absolution parents guide; metro 2035 shure pg58 price in india tommy bahama new york. casio mtp vd01sg 9bvudf full meaning of mppt; fluorescent green color code; magic the gathering
Sifat- Sifat Determinan Matriks. Ada beberapa sifat - sifat determinan matriks, yaitu diantarannya: 1. Apabila semua elemen dari salah satu baris atau kolom sama dengan nol, maka determinan matriks tersebut adalah nol. Perhatikan contoh berikut: Misalkan : 2. Apabila semua elemen dari salah satu baris atau kolom itu sama dengan elemen
Dilansir dari Encyclopedia Britannica, matriks merupakan sekumpulan angka yang disusun dalam baris dan kolom sehingga membentuk susunan angka dalam bentuk persegi panjang. Matriks memiliki berbagai jenis yang perlu untuk diketahui. Jenis bentuk tersebut terdiri dari perbedaan baris dan kolom, maupun perbedaan elemen dari matriks
MCdAm. Kelas 11 SMAMatriksKesamaan Dua MatriksDiketahui matriks A=a b 0 1, B=6 1 -8 7, C=2 -2 1 c, dan D=1 -1 0 2. Jika 2A+B^T=CD dan B^T=transpos matriks B, nilai dari a+b-c= ...Kesamaan Dua MatriksOperasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoHalo friend di sini kita punya soal tentang matriks yang diberikan pada matriks A matriks B seperti ini matriks A dan matriks B jika dua matriks A ditambah dengan matriks B transpose ataupun di sini ditulis sebagai transpose matriks b. Sama saja di sini perhatikan bahwa untuk dua matriks A ditambah matriks B transpose = matriks X matriks b maka nilai dari a kecil B kecil m kecil berarti di sini kita akan mulai terlebih dahulu dari persamaan yang diberikan jadi perhatikan bahwa kita punya dua matriks A ketika kita jumlahkan dengan transpose dari matriks B ini = matriks n x matriks D kita dapat Tuliskan persamaannya disini perhatikan bahwa untuk dua matriks A berarti kita punya adalah 2 dikalikan dengan a kecil B kecil 1 ditambah dengan transpose dari matriks B transpose dari matriks 6187 seperti ini ini akan sama dengan matriks C ditabung adalah 2 min 21 C kecil dikali dengan matriks B yaitu 1 - 102 Di sini perlu diperhatikan bahwa sebenarnya untuk Perkalian antara skalar dengan matriks maknanya adalah untuk setiap elemen pada matriks A ini akan kita kalikan dengan skala tersebut jadi setiap elemen matriks akan kita kalikan dengan 2 maka kita dapati di sini menjadi 2 dikalikan dengan a + ini 2 kita kalikan dengan B2 kita kalikan dengan 02 kita kalikan dengan 1 lalu untuk matriks transpose perlu diperhatikan bahwa makna dari matriks transpose adalah kita menukar antara baris dengan kolom jadi yang awalnya matriks B ini kita punya baris pertama nya adalah 61 baris keduanya adalah Min 87 kolom pertamanya adalah 6 Min 8 kolom keduanya adalah 17, maka sekarang kita tukar antara baris dengan kolom nya yang berarti untuk 61 ini yang Pertama kita jadikan sebagai penolong yang pertama maka kita dapat diisikan di sini menjadi ditambahkan 61 nya taruh di sebalik kolom pertama lalu perhatikan bahwa untuk Min 8 ini sebagai barisan kedua kita taruh sebagai kolom yang kedua pada masih transposenya jadi kita punya disini Min 8 lalu di sini 7 makanya kan = perhatikan bahwa untuk matriks t jika kita punya Perkalian antara dua buah matriks kita biarkan terlebih dahulu nanti kita akan kerjakan di bagian bawah supaya tidak terlalu sempit tempatnya jadi sementara kita Tuliskan terlebih dahulu. Sekarang kita kan Sederhanakan bentuk-bentuk yang ini 2 dikali a tentunya 2 a 2 kali B berarti 2 b 2 dikali 002 dikali 1 tentu saja adalah 2 lalu kita jumlahkan dengan tamunya 6 Min 817 akan sama dengan seni kita punya dua min 21 dikali dengan 1 Min 102 bawa disini kita punya penjumlahan antara dua buah matriks. Di manakah yang kita menjumlahkan dua buah matriks berarti sebenarnya kita jumlahkan adalah untuk setiap elemen yang terletak pada posisi yang sama jadi misalkan dua ini kita jumlahkan dengan 62 B kita jumlahkan dengan 80 kita jumlahkan dengan 12 kita jumlahkan 7 akibatnya disini kita mendapati bahwa matriks hasil penjumlahannya adalah berarti kita dapat jumlah karya seni untuk 2 dengan 6 berarti kita punya adalah 2 A + 6 lagu untuk 2 B ditambah dengan 8 berarti menjadi seperti ini Kalau kita punya juga 0 ditambah dengan 1 berarti 0 + 1 x 2 ditambah dengan 7 kita punya adalah 2 ditambah dengan 7 seperti ini ya kan = 2 min 21 kita kalikan dengan 1 - 102 Di sini perlu diperhatikan bahwa sebenarnya kita dapat Sederhanakan bentuk-bentuk yang ini berarti 2 A + 6, b. Biarkan kelompok 2 B + Min 8 sama saja dengan 2 B dikurang 80 + 1 adalah 12 + 7 adalah 9 sekarang barulah kita lakukan Perkalian antara matriks C dengan D perhatikan di sini bahwa kita Buya matriks C baik d ini adalah matriks yang berordo 2 * 2 jadinya jika kita perhatikan ketika kita punya istri memiliki 2 baris dan 2 kolom kita Tuliskan ordo nya adalah 2 * 2 dan matriks D juga ordonya 2 * 2 karena memiliki 2 baris dan 2 kolom syarat perkalian dua buah matriks ini terdefinisi Apabila banyak Kolom pada matriks A = banyak baris pada matriks D yang memang sudah sama berarti perkaliannya terdefinisi dan nanti hasil perkaliannya akan berordo 2 * 2 yang berarti memiliki 2 baris dan 2 kolom juga jadi perlu diperhatikan bahwa berarti kita mulai terlebih dahulu dari baris ke-1 kolom pertama di mana cara mengalikan nya adalah kita mulai terlebih dahulu antara Perkalian antara pertama dengan kolom yang pertama jadi saya perkalian matriks adalah Perkalian antara baris dengan kolom cara mengalirkannya adalah untuk setiap elemennya kita kalikan yang bersangkutan lalu kita jumlah jari Bisa kan gua ini kita kalikan dengan 1 lalu kita jumlahkan min 2 yang dikalikan 60 jadi kita dapati nanti untuk elemen hasil perkalian pada baris pertama dengan kolom pertama adalah 2 dikali 1 ditambah dengan min 2 dan X dengan no telepon untuk elemen yang terletak pada baris ke-1 kolom kedua ini adalah hasil perkalian antara baris pertama dengan kolom yang kedua Ini kita kalikan antara 2 dengan min 1 kalau kita jumlahkan dengan min 2 yang dikalikan dengan 2 begitupun seterusnya kita punya untuk baris kedua dengan kolom pertama Sekarang berarti 1 kita kalikan dengan 10 dari masuknya 1 dari 1 ditambah dengan Sin X no. Terakhir di sini untuk baris kedua kolom ke-2 berarti kita punya 1 dikalikan dengan minus 1 lalu di sini kita punya ditambah dengan yang dikalikan dengan 2 jadi kita udah pasti seperti ini akibatnya kita dapat menuliskan bahwa di sini untuk 2 a ditambah dengan 62 B 8 19 ini akan sama dengan kita punya 2 dikali 1 ditambah dengan min 2 x 0 tentu saja adalah 2 X min 2 ditambah dengan tamunya adalah min 6 x 1 ditambah dengan 0 adalah 1 x min 1 + 2 c adalah 2 C dikurang 1 jadi kita dapati seperti ini Sekarang perlu diperhatikan bahwa kita punya dua matriks ini sama di mana dua matriks dikatakan sama jika dan hanya jika setiap elemen yang terletak pada posisi yang sama dan nilai sama jadi di sini tinggal sama saja 2 KCL + 6 ini harus = 22 B kecil Min 8 hari = Min 61 = 1 sudah benar 9 harusnya = 2 sekon cermin satu akibatnya dari sini kita mendapati bahwa untuk 2 kecil ditambah 6 ini sama dengan 2 berarti untuk 2 kecil kita punya adalah 2 dikurang 6 yaitu Min 4 berarti untuk a ke c adalah 4 dibagi dua yaitu min 2 kalau kita juga punya disini bahwa untuk yang 2 B Min 8 harus = min 6 jadi kita dapat dituliskan seperti ini berarti perhatikan bahwa untuk 2 B min 6 + 8 itu 2 berarti Beni adalah 2 per 2 yaitu 1 + 1 = 1 sudah benar 9. Haruskah = 2 sekon min 1 berarti kita dapat Bilang sama dengan buah kecil min 1 berarti untuk buang air kecil adalah sila ke-1 yaitu 10, maka untuk nilai dari sin kecilnya adalah 10 per 2 yaitu 5 akibatnya Di sini perlu diperhatikan bahwa kita sudah berhasil mendapatkan nilai a b dan c nya kita dapat melanjutkan Namun kita akan hapus bagian supaya tidak terlalu penuh Sehingga dalam kasus ini kita punya bahwa untuk a kecil + B kecil c kecil adalah min 2 + 1 dikurang 5 yang hasilnya adalah minus 6 b. Pilih opsi yang B sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks-matriks A=-c 2 1 0, B=4 a b+5 -6, C=-1 3 0 2, dan D=4 b -2 3. Jika 2A-B=CD, maka nilai a+b+c adalah ...Operasi Pada MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videologo Vans di sini kita punya soal tentang matriks diketahui matriks matriks sebagai berikut 6 matriks A matriks B matriks A dan matriks B kita diberikan persamaan untuk dua matriks A dikurang matriks B = matriks A x matriks D kita rayakan nilai dari a kecil B kecil c kecil adalah jadi disini kita mulai terlebih dahulu dari persamaan yang diberikan 2 dikurang matriks B = matriks A yang dikali dengan matriks D berarti dua matriks A adalah 2 dikalikan dengan matriks yaitu min c kecil 210 dikurangi dengan matriks B yaitu 4 A kecil B kecil + 5 yang di sini kita punya min 6 ini akan = matriks c nya kita punya min 1302 dikali dengan matriks d adalah 4 b kecil Min 23 kita mulai terlebih dahulu dari yang paling kiri kita punya Perkalian antara skalar dengan matriks yang berarti setiap elemen pada matriks ya kita kali dengan skalar tersebut terjadi dalam kasus ini setiap elemen pada matriks A kita kalikan dengan 2 maka kita dapati di sini menjadi 2 dikalikan dengan mindset kecil 2 dikalikan dengan 22 X dan 12 dikalikan 60 lalu kita kurangi dengan diketahuinya untuk 4 lalu a kecil B kecil dan juga di sini minus 6 perhatikan bawahnya kan = Min 1302 dikalikan dengan 4 kecil Min 23 yang berarti min 2 C kecil Kalau di sini ada 420 harus kita kurangi dengan 4 A kecil B kecil + 5 + min 6 = Min 1302 dikalikan dengan 4 b kecil Min 23 Di sini perlu diperhatikan kita punya pengurangan antara dua buah matriks mana ketika kita mengurangi dua buah matriks berarti kita kurangkan untuk setiap elemen yang terletak pada posisi yang sama jadi min 2 sini kita kurangi dengan 44 ini kita kurangi dengan A2 ini kita kurangi dengan api kecil + 50 ini kita kurangin min 6 dan begitu seterusnya jadi kita punya untuk min 2 si kecil ini kita kurangi dengan 4 lalu 4 ini kita kurangin yang anak kecil 2 kita kurangin dengan b kecil yang ditambah 50 kita kurangin dengan min 6 sehingga ini akan sama dengan Sekarang kita akan lakukan untuk Perkalian antara dua buah matriks perlu diperhatikan bahwa cara mengalikan dua buah matriks adalah kita kalikan antara baris dengan kolom Jadi kita mulai terlebih dahulu baris pertama dari matriks kita kalikan dengan kolom pertama dari matriks t ini akan menghasilkan A terletak pada baris pertama kolom pertama dari matriks hasil perkaliannya cara mengalikan adalah setiap permainan kita kalikan lalu kita jumlahkan Kirimin satu ini kita kalikan 43 ini kita akan Minggu lalu kita jumlahkan keduanya jadi kita punya disini untuk min 1 dikalikan dengan 4 ditambah dengan 3 yang dikalikan 6 min 2 sekarang baris pertama dengan kolom ke-2 berarti 1 kita kalikan dengan b ditambah dengan 3 yang dikalikan dengan 3 sekarang untuk baris kedua dengan kolom yang pertama berarti 0 ini kita kalikan dengan 4 lalu ditambahkan dengan 2 yang mengambil 2 kkal untuk baris kedua dengan kolom ke-2 berarti 0 dikalikan dengan b ini selalu disini kita tambahkan dengan 2 yang dikalikan dengan 34 hitung bawah menjadi minus 2 C kecil yang dikurangi 4 harus diketahui untuk Min A kecil ditambah 4 lalu untuk 2 dikurang 5 berarti sama saja dengan min 3 kamu jangan lupa dikurang kita taruh untuk dirinya di depan berarti min b kecil dikurang 30 dikurang min 6 adalah 6 akan sama dengan Sini kita punya untuk Min 4 ditambah dengan min 6 berarti Min 10 min b kecil ditambah 9 berarti kita dapat diskon seperti ini kalau kita punya juga untuk yang ini 0 ditambah dengan min 4 Min 40 + 6 / 6. Perhatikan bahwa kita mendapati dua matriks ini sama yang berarti untuk setiap elemen yang terletak pada posisi yang sama bernilai sama juga jadi di sini bisa kan min 2 C kecil Min 4 ini harus = Min 10 min akar x + 4 X = min b kecil P 9 min b kecil min 3 X = 46 = 6 ini sudah benar Jadi kita perhatikan kita mulai terlebih dahulu untuk min 2 si kecil dikurang 4 hari = Min 10 jadi kita mendapati persamaannya menjadi seperti ini yang berarti untuk min 2 si kecil adalah Min 10 ditambah dengan 4 yaitu min 6 berarti untuk cek kecilnya adalah minus 6 dibagi minus 2 yaitu 3 selanjutnya untuk minta kecil + 4 hari = min b kecil + 9 jadi kita dapat Tuliskan untuk persamaannya menjadi seperti ini dan ini belum kita ketahui Untuk nilai a dan b nya jadi kita akan lompat itu fokus untuk Mindi kecil min 3 Y = Min 4 jadi kita dapati persamaannya menjadi seperti ini berarti untuk min b kecil adalah Min 4 ditambah 3 yaitu min 1 maka B nyala min 1 + min 1 itu 1 jadi kita dapati nilainya adalah 1 * 6 = 6 sudah benar karena kita sudah dapat dinilai baik berarti kita dapat Tentukan nilai dari kita substitusikan nilai belinya nanti ke sini berarti Min A ditambah dengan 4 = min b min 1 ditambah 9 maka disini perhatikan bahwa untuk anak kecilnya berarti adalah 8 dikurang 4 itu kita punya adalah 4 berarti untuk kecilnya adalah Min 4 dari ini semua kita akan mendapati berarti untuk a kecil + B plastik kecil akan sama dengan berarti Min 4 ditambah 1 ditambah dengan 3 yang nilainya adalah 0. Jadi hasil akhirnya adalah 0 pilih opsi yang c. Sampai jumpa di soal berikutSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
diketahui matriks a 2 0